

Handout Technisches Seminar

Berufsgrundbildung: Elektrobereich

Name:	
Klasse:	

© Josef Stiegler Jänner 2007

Inhaltsverzeichnis

LabView - Anwendungsfenster	. 3
Einführung in LabView	4
Werteingabe und Wertanzeige	5
Addieren	6
Grundrechnungsarten	7
Verbindungen	8
Quiz	. 9
Eigenschaften	. 10
Addieren, Subtrahieren	. 11
Grundfunktion der Digitaltechnik	12
UND	. 13
ODER	. 14
NOT - Inverter	. 15
NAND – Nicht UND	. 16
NOR – Nicht ODER	17
XOR – Exklusiv ODER	. 18
EXNOR – Nicht Exklusiv ODER	. 19
Aufgaben	. 20
Gatter Quiz	. 22
Digital Graph ODER	. 23
Digital Graph alle Gatter	. 24
Ablaufstrukturen	. 25
Celsius, Schleife For	26
Zähler, Blinken LED	. 27
Blinken Zählen, Timing	. 28
Bilder, Schleife While	. 29
Schaltuhr, Formelknoten	. 30
Physikaufgaben	. 31
Graph Sinus, Alarm	. 32
Geschwindigkeit	. 33
Beschleunigung	. 34
Interferenz	. 35
Lastverteilung	. 36
Ping Pong	. 38
Indikator	. 39

Lab View-Anwendungsfenster

Öffnen einer Datei: - Datei anklicken

- Öffnen anklicken und den Ordner und die Datei auswählen

Öffnen eines Frontpanels mit dem Blockdiagramm:

- Leeres VI anklicken
- Menüfolge: Fenster Nebeneinander anklicken und das Blockdiagramm öffnet sich

Werteingabe und Wertanzeige

- Numerische Bedienelemente zum Visualisieren
- ⇒ Öffne die Datei Wert Ein Ausgaben!
- ⇒ Aktiviere das Symbol "Wiederholt ausführen"!
- ⇒ Verändere die Werte bei den Eingabeelemente und beobachte die Veränderungen bei den Ausgabeelementen!
- ⇒ Aktiviere im Blockdiagramm die Highlight-Funktion (Glühbirne)!
- \Rightarrow Beobachte den Simulationsvorgang besonders genau!
- ⇒ Stoppe die Simulation, indem du das rote Symbol "Ausführungen abrechen" anklickst!
- ⇒ Lösche drei Eingabeelemente deiner Wahl im Frontpanel!
- ⇒ Lösche die unvollständigen Elemente!

⇒ Speichere die Datei – Wert Ein Ausgaben1!

Addieren

- Wertein-, WertanzeigeNumerische Bedienelemente zum Visualieren
- \Rightarrow Öffne die Datei Addieren!
- \Rightarrow Aktiviere das Frontpanel!
- ⇒ Führe mehrere Additionen im Zahlenraum 1- 20 aus!
- ⇒ Gib die Zahlen in die Eingabezellen "Zahl 1 und Zahl 2" ein!
- ⇒ Tausche den Additionsknoten gegen die Subtraktion-, Multiplikation-, Divisionsknoten aus! Menü: Cursor auf dem Blockdiagramm platzieren, re MT, Numerisch, Auswahl Subtraktion, Multiplikation, Division

 \Rightarrow Speichere die Datei - Addieren 1!

Grundrechnungsarten

Werteingabe, WertanzeigeNumerische Bedienelemente, Knoten

- ⇒ Öffne die Datei Grundrechnungsarten!
- ⇒ Aktiviere das Frontpanel und führe die gewünschten Rechnungen aus!
- ⇒ Lösche das Frontpanel bzw. das Blockdiagramm und gestalte es entsprechend der Vorlage! Menü: Cursor auf dem Frontpanel, re MT, Express, Werteingabe bzw. Wertanzeige, Auswahl der Elemente fürs Frontpanel, auf dem Blockdiagramm die Knoten aus dem Menü Numerisch einfügen und verbinden.

⇒ Speichere die Datei - Grundrechnungsarten 1!

Verbindungen

b Variable**b** Verbindu

Verbindungspunkte

- \Rightarrow Öffne die Datei Verbindungen!
- ⇒ Aktiviere das Frontpanel und führe die Rechnungen mit den Eingaben Zahl aus!

- \Rightarrow Speichere die Datei Verbindungen 1!
- \Rightarrow Drucke die Datei aus!

Quiz

VariableVerbindungen - Knoten

- \Rightarrow Öffne die Datei **Quiz**!
- ⇒ Verändere die Werte entsprechend der Vorlage!
- ⇒ Welche x, y Eingangswerte bzw. Ausgangswerte besitzen die einzelnen Knoten?
- ⇒ Überprüfe rechnerisch die Ergebnisse!

⇒ Speichere die Datei - Grundrechnungsarten Quiz 1!

Hinweis

Rechnerisch geprüft

Knoten 1+	X=	Y=	X+Y=	
Knoten 2 -	X=	Y=	X-Y=	
Knoten 3 x	X=	Y=	X*Y=	
Knoten 4 :	X=	Y=	X/Y=	
Knoten 5 +	X=	Y=	X+Y=	

© Josef Stiegler NAME

Seite 9 von 39

Eigenschaften

Eigenschaften der Elemente links, oben, sichtbar, blinkendWerkzeugpalette

- ⇒ Öffne die Datei Eigenschaft!
- ⇒ Betätige den Drehregler; Schieberegler!
- \Rightarrow Ändere die Zahlen in "Zahl1" und "Zahl2"?

Hinweis

Menüfolge für die Eigenschaft LINKS:

Tank anklicken, re MT, Erstellen, Eigenschaftsknoten, Position, Links anklicken

Addieren, Subtrahieren

þ

þ

- Menü Eigenschaft sichtbar Verbindungen - Knoten
- ⇒ Öffne die Datei Addieren Subtrahieren!
- ⇒ Aktiviere das Frontpanel und verändere die Eingaben "Zahl1" und "Zahl 2"!
- ⇒ Je nach Schalterstellung ist das Ergebnis sichtbar oder unsichtbar!
- ⇒ Lösche die Wertanzeige "Zahl1 minus Zahl2" im Frontpanel!
- ⇒ Überprüfe die Funktionsfähigkeit!
- ⇒ Ersetze die Knoten durch Multiplizieren und Dividieren!
- ⇒ Verändere jeweils im Frontpanel den Text über der Ergebnisanzeige!

UND

Funktion UNDFunktionstabelle

- \Rightarrow Öffne die Datei **UND**!
- ⇒ Aktiviere das Symbol "Wiederholt ausführen"!
- \Rightarrow Ergänze die Funktionstabelle! Hinweis: 0 es fließt kein Strom 1 der Strom fließt
- ⇒ Stoppe die Simulation, indem du das rote Symbol "Ausführungen abrechen" anklickst!
- \Rightarrow Beschreibe die Funktion!

Funktionstabelle

E 1	E 2	LED (A = E1 ^ E2)
0	0	
0	1	
1	0	
1	1	

In Worten:

.....

Lösungen:

E 1	E 2	LED (A = E1 ^ E2)
0	0	0
0	1	0
1	0	0
1	1	1

Beschreibung: Der Ausgang A des UND - Gatters besitzt immer dann das logische Signal 1, wenn beide Eingänge ein logisches 1-Signal besitzen. Ist E1 = 1 und E2 = 1 dann ist LED (A) = 1

ODER

þ

þ

Funktion ODER

- Funktionstabelle
- \Rightarrow Öffne die Datei **ODER**!
- ⇒ Aktiviere das Symbol "Wiederholt ausführen"!
- \Rightarrow Ergänze die Funktionstabelle! Hinweis: 0 es fließt kein Strom 1 der Strom fließt
- \Rightarrow Beschreibe die Funktion!

Funktionstabelle

E 1	E 2	LED (A = E1 v E2)
0	0	
0	1	
1	0	
1	1	

In Worten:

.....

Lösungen:

E 1	E 2	LED (A = E1 v E2)
0	0	0
0	1	1
1	0	1
1	1	1

Der Ausgang A des ODER - Gatters besitzt immer dann das logische Signal 1, wenn einer der Eingänge E1 oder E2 oder beide Eingänge ein logisches 1-Signal besitzen. Ist E1 = 1 oder E2 = 1 dann ist A = 1.

NOT - Inverter

þ

Funktion NOT

- \Rightarrow Öffne die Datei **NOT**!
- ⇒ Aktiviere das Symbol "Wiederholt ausführen"!
- ⇒ Ergänze die Funktionstabelle! Hinweis: 0 es fließt kein Strom

1 – der Strom fließt

 \Rightarrow Beschreibe die Funktion!

Funktionstabelle

E 2	LED (A= E1)
0	
1	

In Worten:

.....

Lösungen:

E 2	LED (A = E1)
0	1
1	0

Der Ausgang A des Inverters entspricht immer dem entgegengesetzten (negierten) Wert des Eingangs. A = 1 wenn E2 = 0 bzw. A = 0 wenn E2 = 1.

NAND – Nicht UND

b NAND**b** Funktion

Funktionstabelle

- \Rightarrow Öffne die Datei **NAND**!
- ⇒ Aktiviere das Symbol "Wiederholt ausführen"!
- \Rightarrow Ergänze die Funktionstabelle! Hinweis: 0 es fließt kein Strom 1 der Strom fließt
- \Rightarrow Beschreibe die Funktion!

Funktionstabelle

E1	E2	E1 ^ E2	LED (A = $\overline{E1 \wedge E2}$)
0	0	0	
0	1	0	
1	0	0	
1	1	1	

In Worten:

.....

Lösungen:

E1	E2	E1 ^ E2	LED (A = $\overline{E1 \wedge E2}$)
0	0	0	1
0	1	0	1
1	0	0	1
1	1	1	0

Der Ausgang A ist 0, wenn alle Eingänge 1 sind. Der Ausgang A ist 1, wenn mindestens ein Eingang 0 ist.

NOR – Nicht ODER

þ NOR **þ** Funkt

- Funktionstabelle
- \Rightarrow Öffne die Datei **NOR**!
- ⇒ Aktiviere das Symbol "Wiederholt ausführen"!
- \Rightarrow Ergänze die Funktionstabelle! Hinweis: 0 es fließt kein Strom 1 der Strom fließt
- \Rightarrow Beschreibe die Funktion!

Funktionstabelle

E1	E2	E1 v E2	LED (A = E1 v E2)
0	0	0	
0	1	0	
1	0	0	
1	1	1	

In Worten:

.....

Lösungen:

E1	E2	E1 v E2	$LED (A = \overline{E1 \vee E2})$
0	0	0	1
0	1	0	0
1	0	0	0
1	1	1	0

Der Ausgang A ist 1, wenn alle Eingänge 0 sind. Der Ausgang A ist 0, wenn mindestens ein Eingang 1 ist.

XOR - Exklusiv ODER

Variable Verbindungen - Knoten

 \Rightarrow Öffne die Datei – **XOR**!

þ

þ

- ⇒ Aktiviere das Symbol "Wiederholt ausführen"!
- \Rightarrow Ergänze die Funktionstabelle! Hinweis: 0 es fließt kein Strom 1 – der Strom fließt
- \Rightarrow Beschreibe die Funktion!

Funktionstabelle

E1	E2	E1	E2	E1^ E2	E1 ^ E2	$LED = (E1 \wedge \overline{E2}) \vee (\overline{E1} \wedge E2)$
0	0	1	1	0	0	
0	1	1	0	0	1	
1	0	0	1	1	0	
1	1	0	0	0	0	

In Worten:

Lösungen:

E1	E2	E1	E2	E1 ^ E2	 E1 ^ E2	$LED = (E1 \wedge \overline{E2}) \vee (\overline{E1} \wedge E2)$
0	0	1	1	0	0	0
0	1	1	0	0	1	1
1	0	0	1	1	0	1
1	1	0	0	0	0	0

Der Ausgang A ist 1, wenn alle Eingänge unterschiedlich sind. Der Ausgang A ist 0, wenn alle Eingänge gleich sind.

EXNOR – Nicht Exklusiv ODER

Þ EXNOR

þ

Funktionstabelle

- \Rightarrow Öffne die Datei **EXNOR**!
- ⇒ Aktiviere das Symbol "Wiederholt ausführen"!
- \Rightarrow Ergänze die Funktionstabelle! Hinweis: 0 es fließt kein Strom 1 der Strom fließt
- \Rightarrow Beschreibe die Funktion!

Funktionstabelle

E1	E2	E1	E2	E1v E2	 E1 v E2	$LED = (E1 \vee \overline{E2}) \wedge (\overline{E1} \vee E2)$
0	0	1	1	1	1	
0	1	1	0	0	1	
1	0	0	1	1	0	
1	1	0	0	1	1	

In Worten:

.....

Lösungen:

E1	E2	E1	E2	E1 v E2	 E1 v E2	$LED = (\overline{E1} \lor \overline{E2}) \land (E1 \lor E2)$
0	0	1	1	1	1	1
0	1	1	0	0	1	0
1	0	0	1	1	0	0
1	1	0	0	1	1	1

Der Ausgang A ist 1, wenn alle Eingänge gleich sind. Der Ausgang A ist 0, wenn alle Eingänge unterschiedlich sind.

Auf	gaben					<u> </u>		
Erstelle zu jeder Aufgabe ein VI mit Lab View! Speichere es mit der jeweiligen Aufgaben Nr. ab!								
Aufo	gabe Nr. 1:							
1.	Sprachliche Beschreibung							
	Das Haus erhält eine Alarmanlag	e.						
	Es ertönt die Sirene, wenn die Fei	nster oder T	üren un	befugt	geöffnet v	verde	n.	
_								
2.	Eingangsvariablen und deren A	nfangszust	ande:					
	Fenster(F): F = 0 geschlossen	l ür (l): $I = 0$) gesch	lossen			
	F = 1 offen		= 1	offen				
2 /	Ausgangsvariable und deren An	fangezuetä	ado:					
J. 7	Sirene (Ω): $\Omega = 0$ unbetätigt	langszusta	iue.					
	O = 1 betätigt							
4.	Erstellen der Wertetabelle:							
	Möglichkeit	Input	Inpu	ıt	Output			
		Fenster(F)	Tür	(T)	Sirene (Q)		
	Fenster, Tür geschlossen	0		0	0			
	Fenster offen, Tür geschlossen	1		0	1			
	Fenster geschlossen, Tür offen	0		1	1			
	Fenster offen, Tür offen	1		1	1			
5	Funktion: $\Omega = F$ oder T oder	O = F v T						
0.		<u>a - 1 7 1</u>						
6.	Schaltung:							
-	E1 = Fenster - Input							
	E2 = Tür – Input							
	A = Sirene Q - Output							
Lösı	ung: ODER Gatter							
Aufo	naho Nr. 2.							
1 9	Sprachliche Beschreibung							
1. 1	Ein Safe kann nur mit den richtige	n heiden Sc	hlüsseli	n deöffr	net werde	n		
			mussen	rgcom				
2.	Eingangsvariablen und deren A	nfangszust	ände:					
	Schlüssel Nr.1: Nr.1 = 0 nicht vorh	nanden		Schlü	issel Nr.2	: Nr.2	= 0 nicht v	rorhanden
	Nr.1 = 1 vorhande	n				Nr.2	= 1 vorha	nden
3.	Ausgangsvariable und deren Au	nfangszust	ände:					
	Safe (Q): Q = 0 nicht offen							
	Q = 1 offen							
4.	4. Erstellen der Wertetabelle, Funktion							
	Möglichkeit Input Input Output							
	Nr. 2 Nr. 1 Sate							
	Nr. mont vomanuen, Nr.2 mont vomanuen 0 0 0							
	Nr 1nicht vorhanden Nr 2 vorhanden 0 1 0							
	Nr 1vorhanden Nr 2 vorhanden 1 1 1							
5. Schaltung: E1 = Schlüssel Nr. 1 - Input								
	E2 = Schlüssel Nr. 2	2 - Input						
	A = Safe Q - Output	ut						
Lösi	ung: UND Gatter							

Aufgabe Nr. 3:

Beim Drücken des Schalters "S1" leuchtet die Lampe "H1". Beim Loslassen des Schalters "S1" erlischt die Lampe.

Lösung: kein Gatter – nur eine Verbindung

Aufgabe Nr. 4:

Die Lampe "H1" leuchtet, wenn die Schalter "S1" <u>UND</u> "S2" eingeschaltet sind. Wenn <u>nur einer</u> der beiden Schalter eingeschaltet ist, darf die Lampe <u>NICHT</u> leuchten. Lösung: UND Gatter

Aufgabe Nr. 5:

Die Lampe "H1" leuchtet, wenn die Schalter "S1" <u>ODER</u> "S2" eingeschaltet Lösung: ODER Gatter

Aufgabe Nr. 6:

Die Lampe "H1" leuchtet, wenn die Schalter "S1" <u>UND</u> "S2" <u>NICHT</u> eingeschaltet sind. Lösung: NAND Gatter

Aufgabe Nr. 7:

Nach dem Simulationsstart soll die Lampe "H1" leuchten. Sie erlischt, wenn der Schalter "S1" **ODER** "S2" aktiviert ist.

Lösung: NOR Gatter

Aufgabe Nr. 8:

Die Lampe "H1" darf nur leuchten, wenn nur einer der beiden Schalter ("S1" und "S2") aktiv ist. Sind beide aktiviert, darf die Lampe nicht leuchten. Lösung: XOR Gatter

Aufgabe Nr. 9:

Die Lampe "H1" leuchtet, wenn beide Schalter ("S1" und "S2") aktiv ist. Ist nur ein Schalter aktiviert, darf die Lampe nicht leuchten. Lösung: EXNOR Gatter

Aufgabe Nr. 10:

Die Lampe "H1" muss leuchten, wenn der Schalter "S1" nicht gedrückt ist. Wird der Schalter "S1" gedrückt, erlischt die Lampe "H1".

Lösung: NOT Gatter

Aufgabe Nr. 11:

Die Ausschaltung dient dazu, einen Verbraucher oder Verbrauchergruppen von einer Stelle aus beliebig ein- oder auszuschalten. Lösung: Ein- Ausschaltung: S1, UND, Lampe

Aufgabe Nr. 12:

Die Serienschaltung dient dazu, zwei Verbraucher von einer Stelle aus unabhängig voneinander einoder auszuschalten.

Lösung: Serienschaltung: S1, S2, OR, Lampe 1, Lampe 2

Aufgabe Nr. 13:

Die Wechselschaltung dient dazu, ein oder mehrere Verbraucher von zwei Stellen beleibig ein- oder auszuschalten.

Lösung: Wechselschaltung: S1, S2, XOR, Lampe

Aufgabe Nr. 14:

Die Kreuzschaltung dient dazu, einen oder mehrere Verbraucher von drei oder mehr Stellen beleibig ein- oder auszuschalten.

Lösung: Kreuzschaltung: S1, S2, S3, XOR, XOR, Lampe

Gatter – Quiz

р р Grund- und Zusammengesetzte Gatter Eigenschaft – sichtbar, unsichtbar

- ⇒ Öffne die Datei Gatter Quiz!
- ⇒ Aktiviere das Symbol "Wiederholt ausführen"!
- \Rightarrow Wähle ein beliebiges Gatter aus!
- \Rightarrow Vergleiche das Ergebnis mit der jeweiligen Funktionstabelle!
- \Rightarrow Das Ergebnis kannst du sichtbar bzw. unsichtbar darstellen!

Digital Graph ODER

þ

- Visualisieren der digitalen Gatterfunktion mittels Graph
- ⇒ Öffne die Datei Digital Graph ODER!
- ⇒ Aktiviere das Symbol "Wiederholt ausführen"!
- ⇒ Die Simulation zeigt den digitalen Graph mit der Amplitude von 0 nach 1!
- \Rightarrow Tausche das ODER Gatter gegen UND, XOR, NOR bzw. NAND aus!
- \Rightarrow Führe jeweils die Simulation aus!

Digital Graph alle Gatter

- þ
 - Visualisieren der digitalen Gatterfunktion mittels Graph
- ⇒ Öffne die Datei Digital Graph alle Gatter!
- ⇒ Aktiviere das Symbol "Wiederholt ausführen"!
- \Rightarrow Wähle ein beliebiges Gatter aus!
- \Rightarrow Führe die Simulation aus!

Celsius

þ

Umrechnung der Temperatur von C in F und F in C, Konstante

- ⇒ Öffne die Datei Celsius!
- \Rightarrow Aktiviere das VI!
- ⇒ Ergänze jeweils ein Element Thermometer für Celsius und Fahrenheit!
- ⇒ Stelle den Gefrierpunkt von Wasser 0° C und 32° F auf den Thermometern dar!
- \Rightarrow Stelle den Siedepunkt von Wasser 100° C und 212° F auf den Thermometern dar!
- ⇒ Gestalte ein VI zur Umrechnung von Fahrenheit in Celsius!

Hinweis:

Die Umrechnungstabelle (Fahrenheit unterteilt die Skala - 180 Teile je 1°F):

- Temperatur Fahrenheit = Temperatur Celsius mal 1,8 plus 32
- Temperatur Celsius = (Temperatur Fahrenheit minus 32) dividiert 1,8

Schleife For

b Schleife For

- ⇒ Öffne die Datei Schleife For!
- ⇒ Verändere die "Eingabe der Zählschritte" auf 10, 20, 40!
- \Rightarrow Der Zählvorgang erfolgt im Sekundentakt (1000 = 1 Sekunde)

Eingabe der Zählschritte († 10	Zählschritte
Zählerstand <mark>3</mark>	

Zähler

Zähler þ

- ⇒ Öffne die Datei Zähler!
- Aktiviere das Frontpanel! \Rightarrow
- ⇒ Beachte den Unterschied der Ergebnisse der angezeigten Werte von den Zählern!

		Zähler 1
Zähler 1	Zähler 2	
7	6	Bis zum nächsten Vielfachen von ms warten
- 	2 2 2 2 4 2 4 2 4 2 4 2 4	
		Zähler 2
		Zähler 2 I I III IIII IIIIIIIIIIIIIIIIIIIIIII
		· · · · · · · · · · · · · · · · · · ·

Blinken LED

Zeitfunktion

- þ While Schleife, Casestruktur þ
- Öffne die Datei Blinken LED! \Rightarrow
- \Rightarrow Aktiviere das Frontpanel!

Blinken Zählen

- **b** Zeitfunktion, While Schleife, Casestruktur, Variable
- ⇒ Öffne die Datei Blinken Zählen!
- ⇒ Aktiviere das Frontpanel (synchrones Zählen und Blinken)!

Timing

- **b** Zeitfunktion**b** While Schleife
- \Rightarrow Öffne die Datei **Timing**!
- \Rightarrow Aktiviere das Frontpanel!
- ⇒ Der Zählvorgang erfolgt im Sekundentakt (1000 = 1 Sekunde)
- \Rightarrow Ändere im Zähler 1 den Sekundentakt auf 10000 bzw. 100.
- ⇒ Beachte die Veränderungen im Zählvorgang!

Hinweis:

Frontpanel: Zähler 1 und Zähler 2? Numerische Anzeige Blockdiagramm: Menüfolge – Express, Ausführung, While-Schleife mit Stopp

Timing - Warten(ms) mit Numerische Konstante

Schleife While

While Schleife, For Schleife Graph

- ⇒ Öffne die Datei Schleife While!
- ⇒ Beachte die selbsterklärende Ergebnis der einzelnen Schleifen im Graph!

Bilder

b While Schleife**b** Bilder

- \Rightarrow Öffne die Datei **Bilder**!
- \Rightarrow Aktive das Frontpanel!
- ⇒ Füge zwei zusätzliche Bilder ein! Ändern den Indexzähler von 4 auf 6!

Schaltuhr

þ

Lokale Variable

- ⇒ Öffne die Datei Schaltuhr!
- ⇒ Stelle die Schaltuhr auf die Zahl zwanzig sie die eingestellten Sekunden "herunter!!
- ⇒ Ändere das VI so, dass die Schaltuhr nach "hinauf" zählt, indem das Inkrement +1 einfügst!

Hinweis: Lokale Variable - Element anklicken, re MT, Lokale Variable

Formelknoten

b Formelknoten

- ⇒ Öffne die Datei Formelknoten!
- \Rightarrow Ändere die Eingabe in der "Zahl 1" und der " Zahl 2" entsprechend der Vorlage!
- \Rightarrow Setze das Zeichen für minus, multiplizieren, dividieren anstatt plus ein!
- ⇒ Überprüfe jeweils die Funktion!

Graph Sinus

þ

- Signal simulieren Wechselstrom, Graph
- ⇒ Öffne die Datei Graph Sinus!
- ⇒ Aktiviere das Frontpanel! Beobachte den Graph und das Drehspulinstrument!

Alarm

- **b** Größenvergleich, Limitfunktion
- \Rightarrow Öffne die Datei Alarm!
- ⇒ Verändere das Limit so, dass der Alarm leuchtet bzw. nicht leuchtet!

Geschwindigkeit

b Geschwindigkeit

- ⇒ Öffne die Datei Geschwindigkeit!
- ⇒ Stelle die Geschwindigkeit ein, indem zu den Zeiger anklickst und in auf die gewünschte Marke drehst!
- ⇒ Aktivere das VI mit dem Button "Ausführen"!

\Rightarrow Beachte das Ergebnis im Graph!

Hinweis: Gerade gelichförmige Bewegung Formel: s = v*t + s0

Beschleunigung

b Beschleunigung

- \Rightarrow Öffne die Datei **Beschleunigung**!
- \Rightarrow Aktivere das VI mit dem Button ausführen!
- ⇒ Stelle die Beschleunigung ein, indem zu den Zeiger anklickst und in auf die gewünschte Marke drehst!
- \Rightarrow Beachte das Ergebnis im Graph!

Hinweis: Beschleunigte Bewegung Formel: $s = v0^{t}+1/2^{a}t^{t}$

Interferenz

- **b** Überlagerung von Wellen
- ⇒ Öffne die Datei Interferenz!
- \Rightarrow Aktiviere das VI!
- ⇒ Verwende die Einstellungen entsprechend der Vorlage!

Hinweis:

Die Interferenz ist ein schwieriges Teilgebiet der Physik, welches aber sehr einfach und eindrucksvoll dargestellt wird. LabView ermöglicht Daten aller Art einfach mathematisch zu verknüpfen. in diesem Beispiel wird die Mächtigkeit von LabView demonstriert.

Die vollständige Auslöschung sowie die Maximalverstärkung sind nur zwei spezielle mögliche Simulationen von vielen möglichen.

Lastverteilung

- ի Þ
- Menü Eigenschaft, Position, Links
- Lastverteilung auf zwei Lager

⇒ Öffne die Datei - Lastverteilung!

- \Rightarrow Aktiviere das VI und führe die Simulation mit 10 kg bzw. 6 kg Masse aus!
- ⇒ Schiebe den Regler auf die jeweilige Marke 20, 0, 40, 10 und 30!

⇒ Notiere die Ergebnisse in der Labelle!							
Masse	Regler	Last li	Last re	Masse	Regler	Last li	Last re
10 kg	20			6 kg	20		
10 kg	0			6 kg	0		
10 kg	40			6 kg	40		
10 kg	10			6 kg	10		
10 kg	30			6 kg	30		

 \Rightarrow Speichere das VI unter Lastenverteiler 1!

- ⇒ Lösche im Frontpanel die Rundinstrumente, im Blockdiagramm die Knoten mit Verbindung!
- ⇒ Wähle als Wertanzeige im Frontpanel die V-Messleiste und ergänze die Knoten mit den Verbindungen im Blockdiagramm!

Legende: F.... Gesamtlast

F1,F2Teilast

D Drehpunkt

Hinweis:

Die Last (F) von100 N (Masse von 10kg) wird auf zwei ,,Lager" indirekt proportional zu den Abständen (r1,r2) von F1 und F2 zum Drehpunkt (Tank) verteilt.

Reglermarke 10: r1:r2=10:30 F1:F2=30:10 Berechnung: 100 dividiert durch 40 ergibt 2,5 F1=30*2,5=75N-kürzerer Radius F2=10*2,5=25N-längerer Radius

Verbinden der Knoten:

1. Knoten - dividieren: Eingang X-Masse in kg Eingang Y-Konstante 40 (Regler) Ausgang – 2 Knoten multiplizieren

- 2. Knoten multiplizieren: Eingang x -1.Knoten Y Eingang y - Regler Ausgang – 3 Knoten minus
- 3. Knoten minus: Eingang x -1 Konstante 10 Eingang y - 2 Knoten Ausgang - 4 Knoten multiplizieren
- 4. Knoten multiplizieren: Eingang x -3. knote Eingang y - Konstante 10 (Kraft 10 N) Ausgang Last links
- 5. Knoten multiplizieren: Eingang x Konstante 10(Kraft 10N) Eingang y -2 Knoten Ausgang Last rechts
- 6. Knoten multiplizieren: Eingang x Regler
 Eingang y Konstante 5 (Platzhalter Koordinaten)
 Ausgang links Masse in kg

Überprüfe die Funktionen, indem du die Tabellenwerte vergleichst bzw. im Simulationsmodus - Blockdiagramm - mit der linken MT die Stelle anklickst - so erscheint der Zahlenwerte!

Die Aufteilung erfolgt analog zum Hebelgesetz und wurde so programmiert, dass ein Tank - Symbol, das die Masse durch seine Füllung darstellt, auf einem Balken während des Programmablaufs mit dem Regler verschiebbar ist und die Lastverteilung auf die Lager während des Verschiebens angezeigt wird.

Ping Pong

þ

Grafische Darstellung des Reflexionsgesetzes

- ⇒ Öffne die Datei Ping Pong!
- \Rightarrow Aktiviere das VI und führe die Simulation aus!

Formation Formation Delar Plot D.36658	Hinweis: Die Billardkugeln prallen von der Bande nach dem Reflexionsgesetz ab Der Einfallswinkel ist gleich dem Ausfallswinkel eines Lichtstrahles. In dieser Aufgabe wird die Vollgrafikfähigkeit von Lab View eingesetzt.

Indikator

þ

- Grafische Darstellung des pH Wertes
- ⇒ Öffne die Datei Indikator!
- \Rightarrow Aktiviere das VI und führe die Simulation aus!

Ansicht – Frontpanel

Ansicht - Blockdiagramm

Hinweis:

Die Farbskala entspricht fast exakt den Farben eines Universalindikators.